

Debugging Data Center Demand 2025 Midwest Energy Solutions

2

Micah Sweeney Technical Lead, EPRI

30 January 2025

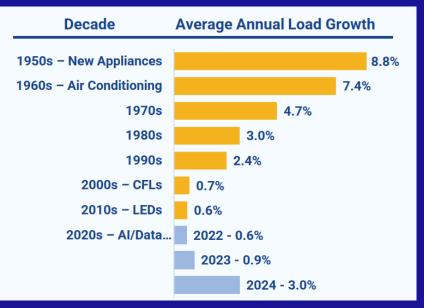
 in
 X
 f

 www.epri.com
 © 2025 Electric Power Research Institute, Inc. All rights reserved.

Agenda

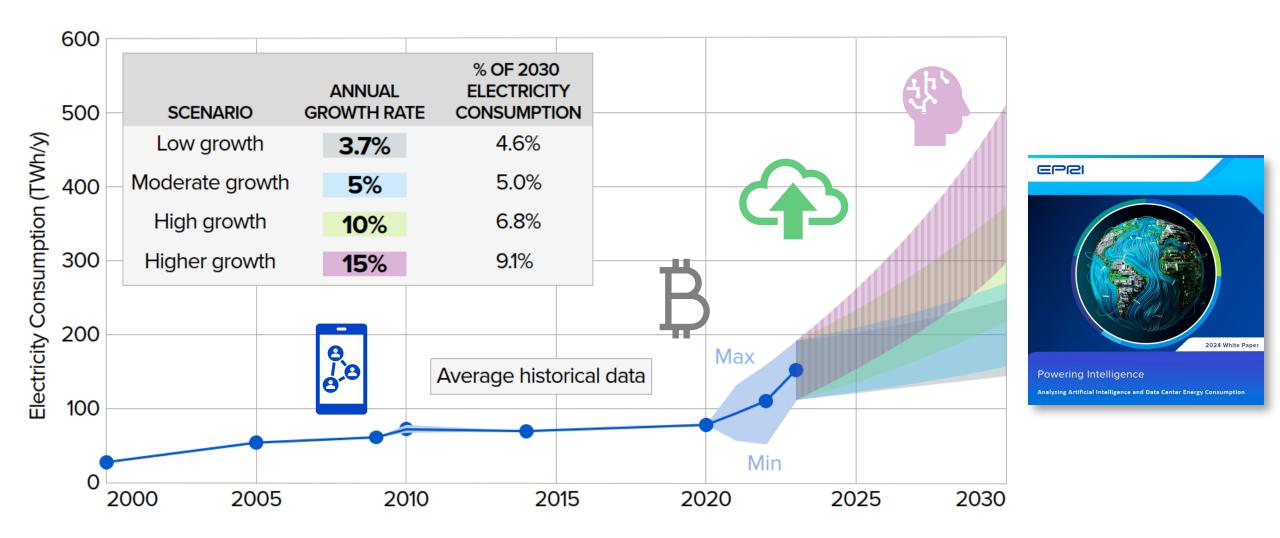
- "The Era of Flat Power Demand is Behind Us"
- Demand growth drivers: cloud, crypto mining, & Al
- Energy use & load profile
- Regional growth concentration
- Demand response / flexibility opportunities
- Data centers a resource for the clean energy transition

"The Era of Flat Power Demand is Behind Us"


- Grid Strategies, Dec 2024

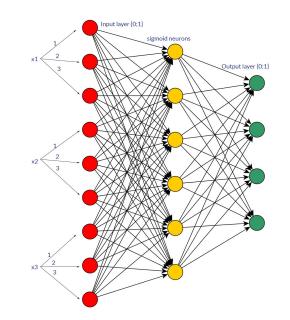
Load growth to add 128 GW peak demand by 2029 2029 Summer Peak Demand Growth (GW) 125 With Updates: 100 128 GW 75 67 GW 50 39 GW 25 23 GW 0 **2022 FERC** 2023 FERC **2024 FERC Forecasted Peak Forecasted Peak Forecasted Peak** Demand: 840 GW Demand: 859 GW Demand: 947 GW

Source: Grid Strategies National Load Growth Report 2024


<u>"Electricity is a bull market for</u> <u>the first time in decades"</u>

- Semafor, Mar 2024

Grid Strategies 2024


Data Centers Driving US Load Growth

EPRI paper Powering Intelligence: Analyzing AI and Data Center Energy Consumption

Generative Al Energy Use

- Large language models rely on massive matrix multiplication
- Estimates of ChatGPT energy:
 - Model training: roughly 50-60,000 MWh
 - <u>Application / inference:</u> 500+ MWh to serve
 200M requests per day
- High energy density driving adoption of liquid cooling

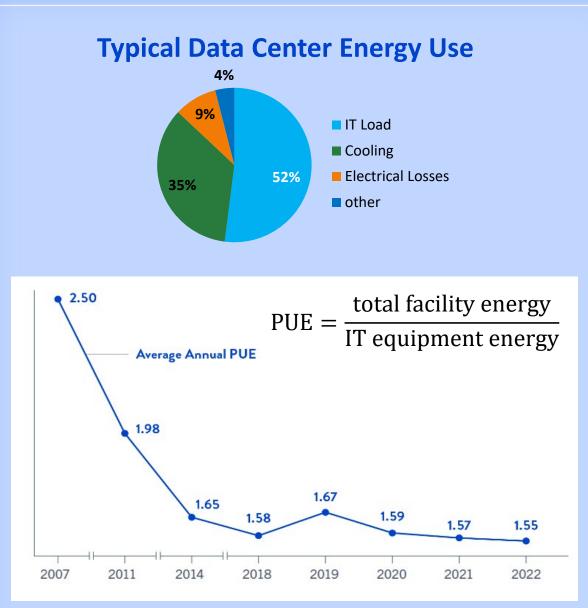
Nvidia GB200 NVL72 with 72x GPUs (700W each)

Energy Use Breakdown

IT load

- servers, storage, networking

Cooling

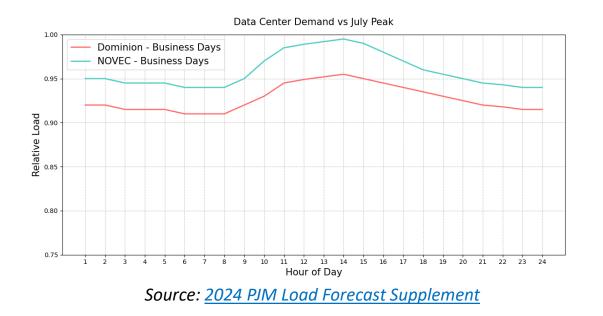

- driven by 24x7x365 IT load
- Chiller efficiency impacted by outdoor air
- Limited humidification load

Power Conditioning

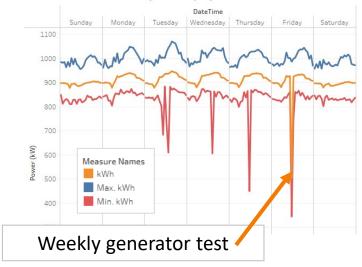
- Uninterruptible power supply (UPS) & battery loss
- Backup generator may use block heater

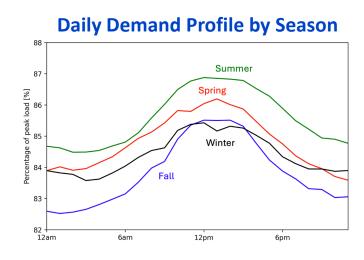
Support

- Lighting, office equipment, space conditioning
- Metric: PUE (Power Usage Effectiveness)


Uptime Institute (2022)

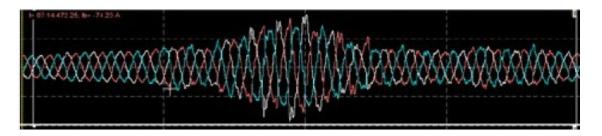
EPR




Data Center Load Profiles

- "Flat" electrical demand profile
 - High load factor
- Small diurnal and seasonal changes
 - Variation in cooling system efficiency

Weekly Demand Profile (avg kWh/hr)



EPRI analysis of <u>Standard demand profiles used</u> by UK Power Network (2019)

Emerging Issue: Load Transients

Conventional data centers support a diverse mix of applications

- Overall data center load shows little variation due to stochastic nature of various workloads (CPU based)
- Emerging AI data centers rely heavily on GPUs
 - Short bursts of 2-4x power observed (on the order of 100 ms to seconds)
 - Similar behavior measured at HPC (supercomputers)
 - Can cause local voltage (flicker), imbalance, and frequency issues

Short (~100 ms) load burst from HPC supercomputer

Data Center Growth is Straining Grid Capacity in Certain Regions

Source: Cushman & Wakefield Data Center Market Comparison (2024)

Powering Data Centers the Face of Climate Goals

Today

- Power purchase agreements (PPA)
- 24/7 carbon-free energy (CFE)
- Bring-your-own-power:
 - Several vendors offering microgrids solutions
- Fuel cells, low-carbon fuels (HVO, H₂)

<u>Google announces 3.5 MW geothermal plant is</u> <u>powering 2 data centers in NV (Nov '23)</u>

Future

- Battery storage
- Load flexibility
- Geothermal
- Nuclear?
 - Small modular reactors (SMR)

Three Mile Island to reopen to power Microsoft data center (Sept '24)

Demand Response/Flexibility

Backup generators	 Limited by local emissions regulations in some jurisdictions 	
UPS / batteries	 Limited number of discharge cycles with lead acid Li-ion UPS can provide grid services (frequency response) 	<u>Microsoft's Dublin DC uses Li-ion</u> <u>batteries to support growth of</u> <u>renewables on the grid</u>
Load flexibility	 Some processes can be scheduled for off-peak hours (backups, updates, etc.) Dynamic load transfer to another data center 	
Opportunity in Al?	• How much flexibility offered by AI model training?	<u>Texas crypto miner Riot</u> <u>Platforms made \$32M from DR</u> <u>participation in August 2023</u> (~3.5x the bitcoin mined)

Data Center DR Examples

- Google shifting non-urgent workloads to non-peak times & locations
 - E.g., video processing, adding new words to translate
 - Europe: Winter 2022-23 in Europe (Netherlands, Belgium, Ireland, Finland, Denmark)
 - Taiwan: summer peak reduction in (2022-23)
 - **USA:** extreme weather events in Oregon, Nebraska, and Southeast
- <u>ERCOT</u> Large Flexible Load Task Force focused on integrating crypto mining
 - Improve load forecasting, reduce interconnection times
 - Establish voltage ride-through standards to avoid unplanned disconnections
 - Define DR ramp rate limits to mitigate need for frequency regulation

WS1: Flexible Data Center Designs

Enabling future data centers to become grid resources through flexible & efficient designs and operational practices

WS2: Transformational Utility Programs

Explore market & program structures that advance data center flexibility

Objective: Demonstrate how data centers can support and stabilize the grid while improving interconnection and efficiency.

WS3: Grid Planning for Operational Flexibility

Equip the utility industry planning practices to embrace large flexible loads

Data centers can be a key resource for the clean transition!

Questions?

Micah Sweeney Technical Lead <u>msweeney@epri.com</u>

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2025 Electric Power Research Institute, Inc. All rights reserved